Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85
1.
Clin Exp Nephrol ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38644406

Ferroptosis is a type of regulated cell death hallmarked by iron-mediated excessive lipid oxidation. Over the past decade since the coining of the term ferroptosis, advances in research have led to the identification of intracellular processes that regulate ferroptosis such as GSH-GPX4 pathway and FSP1-coenzyme Q10/vitamin K pathway. From a disease perspective, the involvement of ferroptosis in pathological conditions including kidney disease has attracted attention. In terms of renal pathophysiology, ferroptosis has been widely investigated for its involvement in ischemia-reperfusion injury, nephrotoxin-induced kidney damage and other renal diseases. Therefore, therapeutic interventions targeting ferroptosis are expected to become a new therapeutic approach for these diseases. However, when considering cell death as a therapeutic target, careful consideration must be given to (i) in which type of cells, (ii) which type of cell death mode, and (iii) in which stage or temporal window of the disease. In the next decade, elucidation of the true involvement of ferroptosis in kidney disease setting in human, and development of clinically applicable and effective therapeutic drugs that target ferroptosis are warranted.

2.
Article En | MEDLINE | ID: mdl-38684468

Ferroptosis is a regulated cell death modality triggered by iron-dependent lipid peroxidation. Ferroptosis plays a causal role in the pathophysiology of various diseases, making it a promising therapeutic target. Unlike all other cell death modalities dependent on distinct signaling cues, ferroptosis occurs when cellular antioxidative defense mechanisms fail to suppress the oxidative destruction of cellular membranes, eventually leading to cell membrane rupture. Physiologically, only two such surveillance systems are known to efficiently prevent the lipid peroxidation chain reaction by reducing (phospho)lipid hydroperoxides to their corresponding alcohols or by reducing radicals in phospholipid bilayers, thus maintaining the integrity of lipid membranes. Mechanistically, these two systems are linked to the reducing capacity of glutathione peroxidase 4 (GPX4) by consuming glutathione (GSH) on the one and ferroptosis suppressor protein 1 (FSP1, formerly AIFM2) on the other hand. Notably, the importance of ferroptosis suppression in physiological contexts has been linked to a particular vulnerability of renal tissue. In fact, early work has shown that mice genetically lacking Gpx4 rapidly succumb to acute renal failure with pathohistological features of acute tubular necrosis. Promising research attempting to implicate ferroptosis in various renal disease entities, particularly those with proximal tubular involvement, has generated a wealth of knowledge with widespread potential for clinical translation. Here, we provide a brief overview of the involvement of ferroptosis in nephrology. Our goal is to introduce this expanding field for clinically versed nephrologists in the hope of spurring future efforts to prevent ferroptosis in the pathophysiological processes of the kidney.

3.
Res Sq ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38659936

Iron catalyses the oxidation of lipids in biological membranes and promotes a form of cell death referred to as ferroptosis1-3. Identifying where this chemistry takes place in the cell can inform the design of drugs capable of inducing or inhibiting ferroptosis in various disease-relevant settings. Whereas genetic approaches have revealed underlying mechanisms of lipid peroxide detoxification1,4,5, small molecules can provide unparalleled spatiotemporal control of the chemistry at work6. Here, we show that the ferroptosis inhibitor liproxstatin-1 (Lip-1) exerts a protective activity by inactivating iron in lysosomes. Based on this, we designed the bifunctional compound fentomycin that targets phospholipids at the plasma membrane and activates iron in lysosomes upon endocytosis, promoting oxidative degradation of phospholipids and ferroptosis. Fentomycin effectively kills primary sarcoma and pancreatic ductal adenocarcinoma cells. It acts as a lipolysis-targeting chimera (LIPTAC), preferentially targeting iron-rich CD44high cell-subpopulations7,8 associated with the metastatic disease and drug resistance9,10. Furthermore, we demonstrate that fentomycin also depletes CD44high cells in vivo and reduces intranodal tumour growth in an immunocompetent murine model of breast cancer metastasis. These data demonstrate that lysosomal iron triggers ferroptosis and that lysosomal iron redox chemistry can be exploited for therapeutic benefits.

4.
Cell Rep Methods ; 4(3): 100710, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38401540

Ferroptosis, a regulated cell death hallmarked by unrestrained lipid peroxidation, plays a pivotal role in the pathophysiology of various diseases, making it a promising therapeutic target. Glutathione peroxidase 4 (GPX4) prevents ferroptosis by reducing (phospho)lipid hydroperoxides, yet evaluation of its actual activity has remained arduous. Here, we present a tangible method using affinity-purified GPX4 to capture a snapshot of its native activity. Next to measuring GPX4 activity, this improved method allows for the investigation of mutational GPX4 activity, exemplified by the GPX4U46C mutant lacking selenocysteine at its active site, as well as the evaluation of GPX4 inhibitors, such as RSL3, as a showcase. Furthermore, we apply this method to the second ferroptosis guardian, ferroptosis suppressor protein 1, to validate the newly identified ferroptosis inhibitor WIN62577. Together, these methods open up opportunities for evaluating alternative ferroptosis suppression mechanisms.


Ferroptosis , Regulated Cell Death , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Lipid Peroxidation/physiology , Lipid Peroxides
5.
Physiology (Bethesda) ; 39(2): 73-87, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38193763

Ferroptosis, a regulated cell death hallmarked by excessive lipid peroxidation, is implicated in various (patho)physiological contexts. During ferroptosis, lipid peroxidation leads to a diverse change in membrane properties and the dysregulation of ion homeostasis via the cation channels, ultimately resulting in plasma membrane rupture. This review illuminates cellular membrane dynamics and cation handling in ferroptosis regulation.


Ferroptosis , Humans , Lipid Peroxidation
7.
Nat Struct Mol Biol ; 30(11): 1806-1815, 2023 Nov.
Article En | MEDLINE | ID: mdl-37957306

Ferroptosis, marked by iron-dependent lipid peroxidation, may present an Achilles heel for the treatment of cancers. Ferroptosis suppressor protein-1 (FSP1), as the second ferroptosis mainstay, efficiently prevents lipid peroxidation via NAD(P)H-dependent reduction of quinones. Because its molecular mechanisms have remained obscure, we studied numerous FSP1 mutations present in cancer or identified by untargeted random mutagenesis. This mutational analysis elucidates the FAD/NAD(P)H-binding site and proton-transfer function of FSP1, which emerged to be evolutionarily conserved among different NADH quinone reductases. Using random mutagenesis screens, we uncover the mechanism of action of next-generation FSP1 inhibitors. Our studies identify the binding pocket of the first FSP1 inhibitor, iFSP1, and introduce the first species-independent FSP1 inhibitor, targeting the NAD(P)H-binding pocket. Conclusively, our study provides new insights into the molecular functions of FSP1 and enables the rational design of FSP1 inhibitors targeting cancer cells.


Ferroptosis , Ferroptosis/genetics , NAD , Mutation , Mutagenesis , Binding Sites , Protons
8.
Int J Mol Sci ; 24(16)2023 Aug 13.
Article En | MEDLINE | ID: mdl-37628932

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are a new class of medications for managing renal anemia in patients with chronic kidney disease (CKD). In addition to their erythropoietic activity, HIF-PHIs exhibit multifaceted effects on iron and glucose metabolism, mitochondrial metabolism, and angiogenesis through the regulation of a wide range of HIF-responsive gene expressions. However, the systemic biological effects of HIF-PHIs in CKD patients have not been fully explored. In this prospective, single-center study, we comprehensively investigated changes in plasma metabolomic profiles following the switch from an erythropoiesis-stimulating agent (ESA) to an HIF-PHI, daprodustat, in 10 maintenance hemodialysis patients. Plasma metabolites were measured before and three months after the switch from an ESA to an HIF-PHI. Among 106 individual markers detected in plasma, significant changes were found in four compounds (erythrulose, n-butyrylglycine, threonine, and leucine), and notable but non-significant changes were found in another five compounds (inositol, phosphoric acid, lyxose, arabinose, and hydroxylamine). Pathway analysis indicated decreased levels of plasma metabolites, particularly those involved in phosphatidylinositol signaling, ascorbate and aldarate metabolism, and inositol phosphate metabolism. Our results provide detailed insights into the systemic biological effects of HIF-PHIs in hemodialysis patients and are expected to contribute to an evaluation of the potential side effects that may result from long-term use of this class of drugs.


Hematinics , Prolyl-Hydroxylase Inhibitors , Humans , Prolyl Hydroxylases , Pilot Projects , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic use , Hematinics/pharmacology , Hematinics/therapeutic use , Erythropoiesis , Prospective Studies , Procollagen-Proline Dioxygenase , Hypoxia
10.
Nat Metab ; 5(6): 924-932, 2023 06.
Article En | MEDLINE | ID: mdl-37337123

Vitamin K is essential for several physiological processes, such as blood coagulation, in which it serves as a cofactor for the conversion of peptide-bound glutamate to γ-carboxyglutamate in vitamin K-dependent proteins. This process is driven by the vitamin K cycle facilitated by γ-carboxyglutamyl carboxylase, vitamin K epoxide reductase and ferroptosis suppressor protein-1, the latter of which was recently identified as the long-sought-after warfarin-resistant vitamin K reductase. In addition, vitamin K has carboxylation-independent functions. Akin to ubiquinone, vitamin K acts as an electron carrier for ATP production in some organisms and prevents ferroptosis, a type of cell death hallmarked by lipid peroxidation. In this Perspective, we provide an overview of the diverse functions of vitamin K in physiology and metabolism and, at the same time, offer a perspective on its role in ferroptosis together with ferroptosis suppressor protein-1. A comparison between vitamin K and ubiquinone, from an evolutionary perspective, may offer further insights into the manifold roles of vitamin K in biology.


Ferroptosis , Vitamin K , Vitamin K/metabolism , Ubiquinone , Vitamin K Epoxide Reductases/genetics , Vitamin K Epoxide Reductases/metabolism , Blood Coagulation
11.
Nature ; 619(7969): 371-377, 2023 Jul.
Article En | MEDLINE | ID: mdl-37380771

Ferroptosis is evolving as a highly promising approach to combat difficult-to-treat tumour entities including therapy-refractory and dedifferentiating cancers1-3. Recently, ferroptosis suppressor protein-1 (FSP1), along with extramitochondrial ubiquinone or exogenous vitamin K and NAD(P)H/H+ as an electron donor, has been identified as the second ferroptosis-suppressing system, which efficiently prevents lipid peroxidation independently of the cyst(e)ine-glutathione (GSH)-glutathione peroxidase 4 (GPX4) axis4-6. To develop FSP1 inhibitors as next-generation therapeutic ferroptosis inducers, here we performed a small molecule library screen and identified the compound class of 3-phenylquinazolinones (represented by icFSP1) as potent FSP1 inhibitors. We show that icFSP1, unlike iFSP1, the first described on-target FSP1 inhibitor5, does not competitively inhibit FSP1 enzyme activity, but instead triggers subcellular relocalization of FSP1 from the membrane and FSP1 condensation before ferroptosis induction, in synergism with GPX4 inhibition. icFSP1-induced FSP1 condensates show droplet-like properties consistent with phase separation, an emerging and widespread mechanism to modulate biological activity7. N-terminal myristoylation, distinct amino acid residues and intrinsically disordered, low-complexity regions in FSP1 were identified to be essential for FSP1-dependent phase separation in cells and in vitro. We further demonstrate that icFSP1 impairs tumour growth and induces FSP1 condensates in tumours in vivo. Hence, our results suggest that icFSP1 exhibits a unique mechanism of action and synergizes with ferroptosis-inducing agents to potentiate the ferroptotic cell death response, thus providing a rationale for targeting FSP1-dependent phase separation as an efficient anti-cancer therapy.


Apoptosis Regulatory Proteins , Ferroptosis , Mitochondrial Proteins , Humans , Amino Acids/metabolism , Cysteine/metabolism , Ferroptosis/drug effects , Glutathione/metabolism , NAD/metabolism , NADP/metabolism , Neoplasms/drug therapy , Quinazolines/pharmacology , Small Molecule Libraries , Ubiquinone/metabolism , Vitamin K/metabolism , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/metabolism
13.
Nature ; 608(7924): 778-783, 2022 08.
Article En | MEDLINE | ID: mdl-35922516

Ferroptosis, a non-apoptotic form of cell death marked by iron-dependent lipid peroxidation1, has a key role in organ injury, degenerative disease and vulnerability of therapy-resistant cancers2. Although substantial progress has been made in understanding the molecular processes relevant to ferroptosis, additional cell-extrinsic and cell-intrinsic processes that determine cell sensitivity toward ferroptosis remain unknown. Here we show that the fully reduced forms of vitamin K-a group of naphthoquinones that includes menaquinone and phylloquinone3-confer a strong anti-ferroptotic function, in addition to the conventional function linked to blood clotting by acting as a cofactor for γ-glutamyl carboxylase. Ferroptosis suppressor protein 1 (FSP1), a NAD(P)H-ubiquinone reductase and the second mainstay of ferroptosis control after glutathione peroxidase-44,5, was found to efficiently reduce vitamin K to its hydroquinone, a potent radical-trapping antioxidant and inhibitor of (phospho)lipid peroxidation. The FSP1-mediated reduction of vitamin K was also responsible for the antidotal effect of vitamin K against warfarin poisoning. It follows that FSP1 is the enzyme mediating warfarin-resistant vitamin K reduction in the canonical vitamin K cycle6. The FSP1-dependent non-canonical vitamin K cycle can act to protect cells against detrimental lipid peroxidation and ferroptosis.


Ferroptosis , Vitamin K , Antidotes/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Carbon-Carbon Ligases/metabolism , Coenzymes/metabolism , Ferroptosis/drug effects , Hydroquinones/metabolism , Hydroquinones/pharmacology , Lipid Peroxidation/drug effects , Oxidation-Reduction , S100 Calcium-Binding Protein A4/metabolism , Vitamin K/metabolism , Vitamin K/pharmacology , Warfarin/adverse effects
14.
Annu Rev Nutr ; 42: 275-309, 2022 08 22.
Article En | MEDLINE | ID: mdl-35650671

Ferroptosis is a type of regulated cell death characterized by an excessive lipid peroxidation of cellular membranes caused by the disruption of the antioxidant defense system and/or an imbalanced cellular metabolism. Ferroptosis differentiates from other forms of regulated cell death in that several metabolic pathways and nutritional aspects, including endogenous antioxidants (such as coenzyme Q10, vitamin E, and di/tetrahydrobiopterin), iron handling, energy sensing, selenium utilization, amino acids, and fatty acids, directly regulate the cells' sensitivity to lipid peroxidation and ferroptosis. As hallmarks of ferroptosis have been documented in a variety of diseases, including neurodegeneration, acute organ injury, and therapy-resistant tumors, the modulation of ferroptosis using pharmacological tools or by metabolic reprogramming holds great potential for the treatment of ferroptosis-associated diseases and cancer therapy. Hence, this review focuses on the regulation of ferroptosis by metabolic and nutritional cues and discusses the potential of nutritional interventions for therapy by targeting ferroptosis.


Ferroptosis , Antioxidants/metabolism , Humans , Iron/metabolism , Lipid Peroxidation
16.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article En | MEDLINE | ID: mdl-36614011

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease, including end-stage kidney disease, and increases the risk of cardiovascular mortality. Although the treatment options for DKD, including angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, sodium-glucose cotransporter 2 inhibitors, and mineralocorticoid receptor antagonists, have advanced, their efficacy is still limited. Thus, a deeper understanding of the molecular mechanisms of DKD onset and progression is necessary for the development of new and innovative treatments for DKD. The complex pathogenesis of DKD includes various different pathways, and the mechanisms of DKD can be broadly classified into inflammatory, fibrotic, metabolic, and hemodynamic factors. Here, we summarize the recent findings in basic research, focusing on each factor and recent advances in the treatment of DKD. Collective evidence from basic and clinical research studies is helpful for understanding the definitive mechanisms of DKD and their regulatory systems. Further comprehensive exploration is warranted to advance our knowledge of the pathogenesis of DKD and establish novel treatments and preventive strategies.


Diabetes Mellitus , Diabetic Nephropathies , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Kidney Failure, Chronic/complications , Renal Insufficiency, Chronic/complications , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Diabetes Mellitus/drug therapy
17.
Hypertens Res ; 45(2): 246-253, 2022 02.
Article En | MEDLINE | ID: mdl-34887530

Recent evidence suggests that the gut microbiota plays an important role in the development and pathogenesis of hypertension. Dysbiosis, an imbalance in the composition and function of the gut microbiota, was shown to be associated with hypertension in both animal models and humans. In this review, we provide insights into host-microbiota interactions and summarize the evidence supporting the importance of the microbiota in blood pressure (BP) regulation. Metabolites produced by the gut microbiota, especially short-chain fatty acids (SCFAs), modulate BP and vascular responses. Harmful gut-derived metabolites, such as trimethylamine N-oxide and several uremic toxins, exert proatherosclerotic, prothrombotic, and proinflammatory effects. High-salt intake alters the composition of the microbiota, and this microbial alteration contributes to the pathogenesis of salt-sensitive hypertension. In addition, the microbiota may impact the metabolism of drugs and steroid hormones in the host. The drug-metabolizing activities of the microbiota affect the pharmacokinetic parameters of antihypertensive drugs and contribute to the pathogenesis of licorice-induced pseudohyperaldosteronism. Furthermore, the oral microbiota plays a role in BP regulation by producing nitric oxide, which lowers BP via its vasodilatory effects. Thus, antihypertensive intervention strategies targeting the microbiota, such as the use of prebiotics, probiotics, and postbiotics (e.g., SCFAs), are considered new therapeutic options for the treatment of hypertension.


Hypertension , Microbiota , Animals , Antihypertensive Agents/therapeutic use , Dysbiosis , Humans , Uremic Toxins
19.
Physiol Rep ; 9(24): e15092, 2021 12.
Article En | MEDLINE | ID: mdl-34921520

Sodium-dependent glucose cotransporters (SGLTs) have attracted considerable attention as new targets for type 2 diabetes mellitus. In the kidney, SGLT2 is the major glucose uptake transporter in the proximal tubules, and inhibition of SGLT2 in the proximal tubules shows renoprotective effects. On the other hand, SGLT1 plays a role in glucose absorption from the gastrointestinal tract, and the relationship between SGLT1 inhibition in the gut and renal function remains unclear. Here, we examined the effect of SGL5213, a novel and potent intestinal SGLT1 inhibitor, in a renal failure (RF) model. SGL5213 improved renal function and reduced gut-derived uremic toxins (phenyl sulfate and trimethylamine-N-oxide) in an adenine-induced RF model. Histological analysis revealed that SGL5213 ameliorated renal fibrosis and inflammation. SGL5213 also reduced gut inflammation and fibrosis in the ileum, which is a primary target of SGL5213. Examination of the gut microbiota community revealed that the Firmicutes/Bacteroidetes ratio, which suggests gut dysbiosis, was increased in RF and SGL5213 rebalanced the ratio by increasing Bacteroidetes and reducing Firmicutes. At the genus level, Allobaculum (a major component of Erysipelotrichaceae) was significantly increased in the RF group, and this increase was canceled by SGL5213. We also measured the effect of SGL5213 on bacterial phenol-producing enzymes that catalyze tyrosine into phenol, following the reduction of phenyl sulfate, which is a novel marker and a therapeutic target for diabetic kidney disease DKD. We found that the enzyme inhibition was less potent, suggesting that the change in the microbial community and the reduction of uremic toxins may be related to the renoprotective effect of SGL5213. Because SGL5213 is a low-absorbable SGLT1 inhibitor, these data suggest that the gastrointestinal inhibition of SGLT1 is also a target for chronic kidney diseases.


Adenine/toxicity , Gastrointestinal Microbiome/drug effects , Renal Insufficiency/chemically induced , Renal Insufficiency/drug therapy , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sorbitol/analogs & derivatives , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Gastrointestinal Microbiome/physiology , Mice , Mice, Inbred C57BL , Renal Insufficiency/metabolism , Sorbitol/pharmacology , Sorbitol/therapeutic use
20.
Cell Death Dis ; 12(7): 698, 2021 07 13.
Article En | MEDLINE | ID: mdl-34257282

Sorafenib, a protein kinase inhibitor approved for the treatment of hepatocellular carcinoma and advanced renal cell carcinoma, has been repeatedly reported to induce ferroptosis by possibly involving inhibition of the cystine/glutamate antiporter, known as system xc-. Using a combination of well-defined genetically engineered tumor cell lines and canonical small molecule ferroptosis inhibitors, we now provide unequivocal evidence that sorafenib does not induce ferroptosis in a series of tumor cell lines unlike the cognate system xc- inhibitors sulfasalazine and erastin. We further show that only a subset of tumor cells dies by ferroptosis upon sulfasalazine and erastin treatment, implying that certain cell lines appear to be resistant to system xc- inhibition, while others undergo ferroptosis-independent cell death. From these findings, we conclude that sorafenib does not qualify as a bona fide ferroptosis inducer and that ferroptosis induced by system xc- inhibitors can only be achieved in a fraction of tumor cell lines despite robust expression of SLC7A11, the substrate-specific subunit of system xc-.


Antineoplastic Agents/pharmacology , Ferroptosis/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Sorafenib/pharmacology , Amino Acid Transport System y+/antagonists & inhibitors , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , HEK293 Cells , Humans , Mice , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Piperazines/pharmacology , Sulfasalazine/pharmacology
...